CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS
نویسندگان
چکیده
منابع مشابه
Combinatorial Formulae for Grothendieck-demazure and Grothendieck Polynomials
∂if = f− sif xi − xi+1 where si acts on f by transposing xi and xi+1 and let π̃i = ∂i(xi(1− xi+1)f) Then the Grothendieck-Demazure polynomial κα, which is attributed to A. Lascoux and M. P. Schützenberger, is defined as κα = x α1 1 x α2 2 x α3 3 ... if α1 ≥ α2 ≥ α3 ≥ ..., i.e. α is non-increasing, and κα = π̃iκαsi if αi < αi+1, where si acts on α by transposing the indices. Example 2.1. Let α = (...
متن کاملFactorial Grothendieck Polynomials
In this paper, we study Grothendieck polynomials from a combinatorial viewpoint. We introduce the factorial Grothendieck polynomials, analogues of the factorial Schur functions and present some of their properties, and use them to produce a generalisation of a Littlewood-Richardson rule for Grothendieck polynomials.
متن کاملQuantum Grothendieck Polynomials
Quantum K-theory is a K-theoretic version of quantum cohomology, which was recently defined by Y.-P. Lee. Based on a presentation for the quantum K-theory of the classical flag variety Fln, we define and study quantum Grothendieck polynomials. We conjecture that they represent Schubert classes (i.e., the natural basis elements) in the quantum K-theory of Fln, and present strong evidence for thi...
متن کاملNotes on Schubert, Grothendieck and Key Polynomials
We introduce common generalization of (double) Schubert, Grothendieck, Demazure, dual and stable Grothendieck polynomials, and Di Francesco–Zinn-Justin polynomials. Our approach is based on the study of algebraic and combinatorial properties of the reduced rectangular plactic algebra and associated Cauchy kernels.
متن کاملSymmetric Polynomials
f(T1, . . . , Tn) = f(Tσ(1), . . . , Tσ(n)) for all σ ∈ Sn. Example 1. The sum T1 + · · ·+ Tn and product T1 · · ·Tn are symmetric, as are the power sums T r 1 + · · ·+ T r n for any r ≥ 1. As a measure of how symmetric a polynomial is, we introduce an action of Sn on F [T1, . . . , Tn]: (σf)(T1, . . . , Tn) = f(Tσ−1(1), . . . , Tσ−1(n)). We need σ−1 rather than σ on the right side so this is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2020
ISSN: 1083-4362,1531-586X
DOI: 10.1007/s00031-020-09623-y